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Phonon localization in mesoscopic free-standing films 

M P Blencowe 
The Blackeu Laboratory, Imperial College, London SW7 28% UK 

Received 14 February 1995 

Abstract. We examine the recent proposal of N Penin conceming the possibility of obswving 
phonon localization in mesoscopic free-standing insulating films with surface roughness. AS 
our model s m c t m  we consider a sapphire 6lm with thickness D = 100 A, width W.= 1 p m  
and length L = 10 &m and surface roughness parameters A = 0 . 3 0  and 6 = 500 A, where 
A is the rms deviation of the surface from flatness and 6 the transverse correlation length. We 
derive an effective phonon transport time rC&) for surface roughness scaltering and then use 
this to determine the approximate frequency range over which the phonon localization length 
is less than the film length and also obtaio a rough estimate o f  the thermal conductivity in the 
temperature range where the effect of localization is strongest. 

1. Introduction 

In a recent paper [I], Perrin argued that Anderson localization of phonons might occur at 
low temperatures in a freestanding electrically insulating film of mesoscopic dimensions. 
In particular, she considered freestanding crystalline silicon films of thickness 100-200 A 
and transverse dimensions of a few micrometres. The reasons why such an unusually small 
structure is favourable for localization are as follows. Generally, the least difficult way 
to probe the phonon transport properties of a solid is to measure the thermal conductivity 
as a function of temperature. Now, a necessary condition for phonon localization is that 
the inelastic scattering rate be less than the elastic scattering rate and this requires that 
we measure the thermal conductivity at low temperatures-typically not more than a few 
kelvin. At 1 K, the thermal phonon wavelength for silicon is about 800 A and therefore a 
freestanding film 100-200 A thick will be effectively two dimensional for phonon transport. 
Recall that the tendency towards localization grows as the dimension is reduced and thus 
low-dimensional transport is desirable. 

We have so far not said anything about the film defects which are responsible for the 
elastic scattering. The elastic scattering must be strong enough that the localization length 
of the thermal phonons will be less than the film length. The crucial observation of Perrin 
is that the scale of the roughness of real surfaces and the thermal phonon wavelength at 
temperatures around 1 K are of the same order of magnitude. Thus, at low temperatures, 
we expect the thermal phonons will be strongly scattered by the surface roughness. 

Using existing electron beam lithography and chemical etching techniques, it should 
be just possible to fabricate a freestanding film from some electrically insulating material 
having the abovequoted dimensions [2,3,4]. 

In the present paper, we shall determine the thermal conductivity at low temperatures of 
a free-standing film with rough surfaces. It is hoped that our obtained results will be of use 
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in interpreting the thermal conductivity data of any relevant future experiment. In particular, 
ow results should help to confirm the presence (or absence) of phonon localization. 

In the next section, we begin with a description of the model free-standing smcture to be 
investigated. Starting with the Kubdreenwood formula for the thermal conductivity, we 
then derive the lowest-order, ‘diffuson’ approximation to the thermal conductivity. The more 
technical parts of the calculation are given in the appendix. The diffuson approximation is 
conveniently expressed in kinetic theory form in terms of an effective, frequency-dependent 
phonon transport time re&). 

In section 3, we use t&~) to determine the approximate frequency range over which 
the phonon localization length is less than the length of the free-standing film. We then give 
a rough estimate of the thermal conductivity in the temperature range for which the effect 
of localization is strongest and compare with the Conductivity when there is no localization 
because of possible strong inelastic processes. 

At a formal level, the phonon thermal conductivity calculations given in the following 
two sections are very similar to the elechical conductivity calculations for a disordered metal 
or semiconductor. In the details, however, there are some intriguing differences between 
the phonon and electron scattering behaviour and hence in their respective localization 
properties. We point out these differences. 

In the conclusion, we discuss some problems which must be addressed in order to 
improve ow understanding of phonon localization. 

2. Determination of the effective phonon transport time 

2.1. The model 

As our model structure, we consider a free-standing, crystalline sapphire film with mean 
thickness 0 = 100 A, width W = 1 pm and length L = 10 pm. The film coordinates 
( r l ,  rz, r3) = (71, r3) satisfy -; W < rl < f W ,  -fL < rz < $L and -$0 + h l ( q )  6 
r3 < fD + h u ( q ) ,  where h. and hl are the deviations from flatness of the upper and lower 
surfaces of the film, respectively. The deviations are defined such that = = 0, where 
the overlines denote an average over an ensemble of surface roughness realizations. We 
assume the deviations obey Gaussian correlation relations: 

where the latter relation meam that there is no correlation between the roughness of the 
upper and lower surfaces. The parameter A is the root mean square deviation of the 
surface from flatness, while 6 is the transverse correlation length. We assume the upper and 
lower surfaces have the same values for these parameters which we take to be A = 0.30 
and 6 = 500 A. The other numbers we require are the density and bulk transverse and 
longitudinal sound velocities of sapphire: p = 3.99 g ct = 6 x Id cm s-’ and 
q = 11 x I@ cm s-’. We set Planck’s constant h and Boltzmann’s constant k to unity in 
the calculations, reintroducing them only in the final expressions. 

We consider sapphire because it is elastically isotropic to a good approximation, thus 
greatly simplifying the analysis. Silicon would probably be the preferred material for 
experiment, however. We expect a silicon free-standing film with the same dimensions 
and roughness parameters will have qualitatively the same thermal conductivity behaviour 
as a function of temperature. 
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The measured correlation functions of actual surfaces are often well approximated by 
a Gaussian [ 5 ] .  However, in some cases an exponential function provides a better fit [6]. 
There are also surfaces which are fractal-like 171. The nature of the surface roughness will 
clearly depend on the surface material and the method of surface preparation. We have 
chosen the Gaussian correlation function because it is the simplest to treat analytically. 

2.2. The phonon modes 

At temperatures around 1 K, the thermal phonon wavelength is several hundred hgstroms 
and thus we can use the continuum approximation. The continuum equations of motion for 
the ith component of the displacement field of the film at location r and time t are [SI 

where we have neglected anharmonic terms. We use the convention of summing over 
repeating indices with i, j ,  k, . . . = 1,2,3. The position-dependent, elastic modulus tensor 
C, jk ) (T)  satisfies 

C i j k f @ )  = [e(-r3 + hdrll) + 4 ~ )  - @(-r3 + hdrli) - iD)lCijk/ 

Ciju = b8ij8kf + LL(8ik8jl + 8ii6,k) 

(3) 

(4) 

with 

where e(.) denotes the Heaviside step function and A and p are the Lam6 constants, related 
to the bulk transverse and longitudinal velocities by 

2 LL = PC, 

b = p(c: - 2cf).  
( 5 )  

Equation (4) follows from the approximation of isotropy in the elastic properties of sapphire. 
The n o d  mode solutions to (2) having wavelengths of several hundred hgstroms are 

slowly varying on the scale A. Following [SI, we can therefore approximate C i j k / ( T )  as 

auk a 
arr arj +cija--[h,(rl,)8(-r, + $D) - hl(r@(-r3 - iD)] = 0. (7) 

The second term on the right-hand side of the ‘F1:’ sign in (7) provides the boundary 
conditions, while the third term conrains the surface roughness. The boundary conditions 
ensure that the stresses acting on the flat surfaces r3 = k i D  vanish. We have the very 
same boundary conditions at the rough surfaces in the more exact equation (2). (In fact, 
the surface roughness only enters in the boundary conditions.) For electrons in a free- 
standing metal film with rough surfaces, the boundary conditions are quite different: the 
wave function must vanish at the rough surfaces. As we shall see below, one consequence 
of these different boundary conditions is the qualitatively different energy dependences of 
the phonon and electron elastic scattering times [9]. 
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The Kubo-Creenwocd formula for the thermal conductivity which we give below 
involves the advanced and retarded displacement-displacement Green functions which 
satisfy an equation similar to (7) (see equation (16)). A fruitful way to approximate the 
ensemble-averaged Green functions is to neglect the third term on the right-hand side of (7) 
incorporating the surface roughness and first solve for the normal modes of the flat film. 
The normal modes are then used to construct the flat surface Green functions. Finally, 
a series approximation to the averaged rough surface Green functions can be obtained in 
terms of the flat Green functions and a ‘roughness potential’ (see equation (21)). Therefore, 
let us neglect the surface roughness term in (7) for now and investigate the flat-film normal 
modes. 

The normal modes of a free-standing film are discussed in many textbooks (cf. [lo]). 
The most common choice of basis involves the transverse (shear horizontal) modes and the 
symmetric and antisymmetric Lamb wave modes. These modes are grouped into subbands. 
For each of the three types, we shall consider only modes of the lowest-frequency subband 
in our calculation of the transport time and thermal conductivity. Corrections arising from 
the next-to-lowest-frequency subband are briefly discussed at the end of section 3. The 
modes are 

(a) transverse 
uZw(r, I )  = V-l/z~,p-  k8 exp[i(k. T - w ( k ) r ) ]  

k 
u:,(r, I )  = 0 
m(k) = q k  = ctk 

(b) longitudinal 

U ~ ( T .  t )  = V-l/zk exp[i(k T - O L ( ~ ) I ) ]  
k 

&(T, t )  = 0 (9) 

oL(k) = cLk = 2qJ-k 
where Greek indices oc, j3.. , . = 1,2 label components in the rl and r2 directions and 
the wavevector satisfies IC = (kll.0) = (%m/W, 2xn/L.O), n , m  = 0, f l ,  f2.. . .. The 
antisymmetric tensor 6.p satisfies 612 = -Q = 1 and E ~ I  = ED = 0. V = LWD is the 
volume of the film and CT and CL are the velocities of the transverse and longitudinal modes 
of the film, respectively. To obtain (9). we have expanded the lowest subband symmetric 
Lamb wave modes in powers of kD and neglected terms of order kD and higher. The 
lowest-subband antisymmebic Lamb wave modes for small k D  a e  called ‘flexural’ modes. 
We shall neglect the flexural modes in the calculations below. The contribution to the 
thermal conductivity from the flexural modes is briefly discussed at the end of section 3. 

2.3. The Kubo-Greenwood formula for the therm1 conductivity 

In an experiment to measure the thermal conductivity, a given amount of power Q is 
supplied to the film at, say, the r3 = - i L  end, with the r3 = +kL end kept at a fixed 
temperature TI. The thermal conductivity of the film is then 

where To is the measured temperature at r3 = -iL and the power supplied is such that 
(To -TI) < TI. 
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The KubiAkenwood formula provides a suitable starting point for an approximate 
evaluation of the thermal conductivity of the film which can be compared with experiment. 
The formula for the thermal conductivity is [ 111 

(11) 

where j3 = T-I, fi and j&) are the Hamiltonian and the energy current operators, 
respectively, and Z is the partition function. This formula holds under quite general 
assumptions concerning the lattice dynamics [l 11. Using the elastic continuum equations of 
motion (2) to approximate the lattice dynamics and neglecting terms in the formula for &(f) 
which are higher than quadratic order in the displacement field and momenlum operators, 
we can express (1 1) in terms of the displacement-displacement Green functions. Following 
the derivations in [I21 and [13], we obtain 

I XZ-' Tr[exp(-@fi)&(-t - ij3').?m(0)] 

1 a2Go 
2 arpr ,  

+-- (P, +'; w + iO)Gkj(+', T ;  w + io) 

aZGi, 
a r p ,  

-- (+, 7'; w + iO)Gkj(+', +; w - io) 

where 

Eijri := (-4ji + 2A)Wji - 2A(6iiSjx + 6ijSri) (13) 

and where the retarded Green function is defined as 

Gij(r, +'; w +  io) := 

and the advanced Green function is 

+W 

d(t - t ' )  exp[iw(t - t')]{-iO(t - PI([&(+, t ) ,  i,(+', r')])} (14) 
S_m 

+m 
d(t - t ' )  exp[iw(t - t')]{+ib'(f' - t)([&(r,  t ) ,  ij(+', t')])} (15) 

S_m 
Gij(+, r'; o -io) := 

with (. . .) := Z-I Tr[exp(-pfi). . .I. In (12). we have also averaged over an ensemble of 
surface roughness realizations, as indicated by the overlines. 

Equation (12) is very similar in form to the expression for the electrical conductivity 
in terms of the advancedktarded electron Green functions 1141. This close similarity 
enables us to use many of the approximation techniques developed for electrical conductivity 
calculations in order to evaluate the thermal conductivity. The first step is to apply 
these techniques to solve approximately for the averaged onephonon Green functions 
Gij(r, r'; w io). The second step is to obtain an approximation to the averaged two- 
phonon Green functions Gjj(+, +; w f. iO)GrI(r', +; o * io) in terms of the averaged one- 
phonon Green functions. We give these steps in the following two subsections. 
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2.4. The one-phonon Green functiom 

The integral form of the equations of motion for the onephonon Green functions is (cf. 
equation (7)) [8,15] 

Gij(r, r'; o *io) = Gj:)(r, r'; w f io) 

dr"Gli)(r, r"; o f iO)L~~!T")G1j(r", T'; w f io) (16) 

where 

with cijkl given in (4). In terms of the normal modes (8) and (9), the flat surface Green 
functions are 

k m k f l  exp(ik. r)  1 
+ (w f - wt(k)  11 

G(0) - G(0) - (0) - 0 
b - e3 -G33 - 

where k takes values as indicated immediately below equation (9). Formula (18) omits the 
flexural modes, as well as the sum over higher-frequency subband modes. 

It is more convenient to work with the Fourier transforms of the Green functions. 
Equations (16) and (17) then become 

G,& 2 ;  w I io) = ~ $ ( k ;  w f. i0)Sb.l 

+ L W G ~ ; ( ~ ;  o % io) L,,(~c,  k ' ) ~ ~ " ( k ' ,  I; o f. io) (1% 
E? 

and 

Lp,(k,  k') = [A& - kb)ki t p(ku - k:)k:&p t /.4b - 
(20) 

where we have used the fact that G(O) (as given in (18)) and hence G do not depend on the 
r3  coordinate. 

Averaging the left- and right-hand sides of (19) over an ensemble of surface roughness 
realizations using for example the method given in [15], we obtain an equation for c. To 
quadratic order in the surface roughness deviations h, and ht, we have 

G,,(k; w f. io) = GFA(k; w & io) + GF:(k; o % iO)V&; w I iO)Gp,,(k; w f io) (21) 
where 

vep(k; 01 io) := LW C ~ " ( k ,  S)C:?(S; of iO)%p(s, k) 

x[h.(k - k') - hi(k - k')] 

- 

* 
x Zn(A()'exp - - t2 (k  - 9)' I1 I [ :  (22) 

and 

q o ( k  s) := W p  - ~ p ) s o  + d k v  - s v ) s d p m  + p(ku - s,)s~. (23) 
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In (22), the exponential term in curly brackets is just the Fourier transform of the surface 
roughness correlation function (1). The factor of two arises because both the upper and 
lower surfaces are rough and uncorrelated with each other, but characterized by the same 
statistical parameters. If the upper and lower surfaces were in fact identical (i.e. h,  = hl) 
and hence correlated with each other, then we would have a factor of four instead. 

Evaluating the sum over momentum s in (22) to obtain V@p and then substituting the 
result in (21) and solving for ??flu, we obtain 

G,p(k; w & io) = (LW)-l[pD(wz - &k)) & irT(k; 0 ) 1 - ' 6 ~ ~ 6 p ~ 7  
- kpkn 

AT(k; 0) := nwk2p2Aze2 exp[-$ ($ + k 2 ) ]  [e (: +3) 10 (E) 

&(k; a) := nwk2p2 4pDc: A2e2 exp [ -$ ($ + k 2 ) ]  [Eh (s) 

nok2p2A2t2  
4pDc: 

cT(k ;  0) := 
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+ [; (; + 4) + f (; + 1) (; + 2)] Iz (5) 
- [i (i + 3) + ,$ (: + 2 ) ]  13 (z) +:Id (%)I (30) 

EL(k 0) := aok2p2 4pDcl A2E2 exp[-T ( $ + k z ) ] [ $ ( ~ + 3 ) I o ( ~ )  

- [ ; + " ( ^ + 2 ) ] I l ( s )  2cik !-L 

-2- 2CL (a +2) I2 (5) + [S + & (p +2)] 13 (S) 
The functions I , (x)  are modified Bessel functions of integer order. In the calculation of 
V,, we have neglected the real part. This gives a downward shift in the phonon velocities 
from their flat-surface values er and CL. 

In terms of the functions r T  and rL, the transverse and longitudinal phonon elastic 
scattering times are 

~ ( 0 )  = p D o r ; ' ( k  O)Ixa,rr (32) 

rL(w) = pDwr,-'(k; ~ ) l ~ = ~ , ~ .  (33) 
For @/er), (w/cL) << 4-l .  we have the familiar 2D Rayleigh scattering frequency 
dependence q ( w ) ,  r~(o) - U3. This strong frequency dependence should be contrasted 
with the approximately energy-independent behaviour of the electron elastic scattering time 
for k < 5-l in a 2D metal film with rough surfaces [16]. As mentioned in subsection 2.2, 
these different dependences are a consequence of the fact that the lattice wave and electron 
wave satisfy different boundary conditions at the rough surface. 

Another notable phonon scattering property not shared by electrons is the 'mixing' 
of the transverse and longitudinal polarizations. Note. the EL function in the definition 
of I1T (equation (25)) and the AT and CT functions in (equation (26)). On scattering 
from the surface roughness, a transverse phonon can transform into a longitudinal phonon 
and vice versa, while for electrons the spin does not change. Note that this phonon 
'uansformation is not in con&adiction with the assumption of elastic scattering. (This must 
be so since anharmonic terms do not appear in the equations of motion (2)J If a transverse 
phonon scatters into a longitudinal phonon, then the wavelength will increase by the amount 
CL/CT z 1 so that the frequency remains unchanged. Thus, Anderson localization can occur 
even though the scatterers change the polarization. 

2.5. The two-phonon Green function and the effective transport time 

In terms of the Fourier Wansforms of the Green functions, expression (12) for the thermal 
conductivity becomes 

x +-Gg.(k, l ;o+iO)Ga,(-k,  -I;w+iO) [:. 
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1 
2 

+-Gp,(k, I ;  w - iO)Gap(-k, -1; o - io) 

1 -Ggo(k, 1; o + iO)G+(-k, -1; o - io) (34) 

where we have used the identity 
G,,(k, I ;  w & io) = Gup(-l, -k; of io). 

Following the Langer method [14] for determining the electrical conductivity, let us define 

(35) 

with analogous definitions for Ttt and T - - .  Using equations of motion (19) for the 
onephonon Green functions, we obtain the following equation for Tt- :  
~ $ ; ~ ~ ( k ;  o) = k,Gpy(k; w + io)G& o - io) 

T$;+("; w )  := CI,Ggy(k,Z;o+iO)Gap(-k, - 2 ; w -  io) 
1 

- 
+ ~ ~ , ( k ;  w + io)GA,(k; w - io) C ~ ~ ~ ~ , , ( k ,  s; -k, -s; O)T&,,~(S; W )  

B 

(36) 
where U is the irreducible vertex. To lowest, quadratic order in the surface deviations h, 
and hl we have 

U,<.,,(k, s; -k, -5) = LW'&$(k, s)?;,(-k, -5) 2n(A{)'exp --(k - s)' 

(37) 
where '&p is defined in (23). The solution to (36) with U given by (37) is called the 
'diffison' approxidon.  Using similar methods to those of Langer [14], the diffuson 
approximations to p-, T++ and T-- are determined and then substituted into (34) and 
the sums over the various component indices and the wavevector k carried out. (The 
calculations are more involved than the analogous electron calculations because of the 
tensorial nature of the terms in (36).) Proceeding directly to the final result, we obtain 

I [: 11 



5186 M P Biencowe 

The functions rT(w) and rL(w) are defined as 

rT(w) := rT(k; O ) I k = m / m  

r d w )  := r d k ;  -)I*=+, . 
The functions a(o), b(w), . . ., ;(U), 6(w), . . . are given in the appendix. 

Expression (38) for the thermal conductivity has been cast in the familiar kinetic theory 
form, with all the terms involving the phonon scattering conveniently grouped together in 
(39) as a single, effective phonon transport time T ~ ( o ) .  The factor two is required in (38) 
because there are two polarizations: longitudinal and transverse. Recall that the transport 
time is defined as the inverse of the difference between the ‘scattering out’ and ‘scattering 
in’ rates. If the scattering did not mix the transverse and longitudinal modes, then the 
difison approximation to the thermal conductivity would have the same form as (38) but 
with the term 2 r , ~  replaced by the sum of the transverse and longitudinal phonon transport 
times. Because the surface roughness mixes the polarizations, the term 2rm cannot be 
decomposed in this way and this is why we call &e an ‘effective’ transport time. 

Expression (39) simplifies considerably at low and high frequencies. For the frequency 
range w << cL/f, we have Rayleigh scattering: 

re&) x C C ~ D ~ A - ~ ~ - * O - ~  (40) 
where C is a dimensionless constant depending only on ct and CI, the bulk transverse and 
longitudinal velocities. For sapphire, C % 0.1 1. 

For the frequency range w >> CL/.$. we have 

Note the strong m4 frequency dependence in (41). This is to be contrasted with the w2 
dependence of the scattering times rL(o) and q ( w )  for the same range w >> Functions 
such as r T ( 0 )  and a(@) in (39) coincide to leading non-vanishing order in an expansion in 
c+/(wf)2 and therefore their difference rT(0J) - a(w) is smaller than rT(0)  by the factor 
c+/(w5)2.  This is the origin of the w2 difference in the frequency dependence. 

The increase in the transverse and longitudinal scattering t h e s  and also transport time 
with increasing frequency w >> cL/f can be understood by examining the form of the 
self-energy V defined in (22) and the irreducible vertex U defined in (37). Fork >> e-], 
the exponential term in V and U ‘forces’ the phonon to be forward scattered, i.e. s w k .  
However, the tensor term z p ( k ,  s) vanishes for s = le. Therefore, the strength of the 
interaction between the phonon and the surface roughness weakens as k increases, thus 
causing the phonon scattering times and transport time to increase. 

From (40) and (41), we see that tee scales as (D/A)’ and, furthermore, &&) must 
have a minimum for some frequency w close to cL/c. Figure 1 shows rem versus frequency 
for the given parameters of our model structure. The effective transport time attains its 
minimum value at w x l.lq,/C. This result is the precise expression of Perrin’s observation 
that phonons with wavelength of the same order of magnitude as the scale of the suiface 
roughness are the most strongly scattered. Note that a similar behaviour was observed by 
Seyler and Wybourne in their theoretical investigation of phonon scattering in narrow wires 
with surface roughness [17]. 

In our determination of the thermal conductivity, we neglected scattering from the film 
edges. Thus, we expect equation (39) will hold to good approximation only over the 
frequency range for which ?&J)~L < W, where W is the film width. wecall that CL > q 
and therefore q, sets the range.) For the parameters of our model structure, this condition 
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0 0.5 1 1.5 2 2 . 5  3 3 

Frequency (2. lo%-') 

Figure 1. The effective phonon transpofi time versus fquency. The frequency is given in 
units of = 2 x 10'1 s-1. 

gives 0 . 3 3 c ~ / f  < o < 3 . 1 c ~ / C .  We call this the strong-scattering frequency range. As 
we go to lower and higher frequencies, the transport time will deviate from (39) and tend 
towards a boundary scattering time, Q,. which is expected to be approximately frequency 
independent and proportional to the film width: 

(42) 
where the parameter a 1 characterizes the specularity of the scattering from the side 
edges of the film. Neither is equation (42) expected to hold for arbitrarily low and high 
frequencies. For low enough frequencies, the scattering length will exceed the film length 
L, while for high enough frequencies, we expect the scattering length to be of the order of 
the film thickness D .  

1 rb = aWcL 

3. The thermal conductivity 

In this section, we first determine the drequency range for which the phonon localization 
length Lt,(w) is less than the length L (= 10 fim) of the free-standing film and then obtain 
estimates for the thermal conductivity versus temperature. 

Most calculations of the phonon localization length treat phonons as scalars and assume 
the scatterers are pointlike and uncorrelated. As a consequence, the scattering potentials 
in the equations for the ensemble-averaged Green functions are isotropic. The localization 
length is relatively straightforward to estimate and is found to depend on the elastic scattering 
time. For the present problem, on the other hand, we see from equations (22). (23) and 
(37) that the scattering potential is highly anisotropic. even vanishing for forward scattering 
as was pointed out in subsection 2.5. Bbal-Monod [18] has considered the more difficult 
problem of anisotropic scattering (for electrons) and has argued that the localization length 
estimates are identical in form to the estimates obtained assuming isotropic scattering, with 
the only difference that the scattering time is replaced by the transport time. We shall 
therefore assume a reasonable estimate for the phonon localization length is given by the 
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isotropic estimate with the elastic scattering length replaced by the effective transport time 

We would like to determine the maximum and minimum frequencies for which 
Ll,,(w) < L and therefore require an estimate of Lloc(w) for frequencies where Llac(w) > 
W. Such an estimate can be obtained using the methods of Thouless [19,20]. The 
localization length estimate is [l] 

Teff. 

giving a maximum frequency 

for the condition Lloc(w) < L .  On the other hand, there would appear not to be a minimum 
frequency: we have Lloe(w) < L for 0.33~~1: < w 3.lc&, the strong-scattering range, 
and for o < 0.33cL/( as well with rfl in (43) replaced by Tb with specularity parameter 
a of order unity. However, as was pointed out in subsection 2.5, the boundary scattering 
estimate (42) does not hold for arbitrarily small w. For large enough wavelength, we will 
have ballistic transport along the length of the film and therefore there must be a minimum 
frequency @min for which LlOc(w) < L.  We are unable to give an estimate for omin using 
the present approximation methods, however, since they are appropriate only for the strong- 
scattering frequency range. A separate investigation would be required. 

In order that a phonon be localized, it is necessary that the time taken for the phonon 
to diffuse along the localization length be less than the inelastic scattering time. Pemn 
[I] assumes the inelastic scatterers in the free-standing film can be modelled as two-level 
systems (TLS). For her estimates of the number density of TLSs and the coupling strength 
between the TLSs and the phonons, the localization length diffusion time is indeed less than 
the inelastic time when the localization length is less than the film length. However, it must 
be noted that there is a good deal of uncertainty concerning the nature of inelastic scatterers 
in disordered materials at low temperatures: very few experiments have been carried out on 
mesoscopic, free-standing films and therefore we cannot at present rule out the possibility 
of strong inelastic surface roughness and/or impurity scattering mechanisms. 

Thus, in figure 2 we give two different possible estimates for the thermal conductivity 
versus temperature. The dashed curve assumes the phonons are not localized for w < w-, 
because of some strong inelastic scattering mechanism giving an inelastic scattering time 
which is smaller than the localization length diffusion time (but larger than bf). This curve 
is a plot of (38), with T&O) replaced outside the strong-scattering frequency range by the 
boundary scattering time, rb, with speculatity parameter or = 3. This is clearly only a rough 
approximation: the actual transition from re&) to q, will not be as abrupt. 

The full curve is a rough estimate of the thermal conductivity assuming the phonons 
are localized for w < m,-. The curve is simply a plot of (38) with teff replaced by t b  
(or = 3) and with lower frequency cut-off om = 3.lc& in the integration range. 

If we could extend these two cwes  down to lower temperatures, then we would find 
they eventually coincided since, as discussed above, for sufficiently low frequencies the 
localization length will exceed the film length. 

Given the magnitude of the difference between the two curves, it should be possible in 
an experiment which measures the thermal conductivity of a free-standing film with similar 
characteristics to those of our model smchue to determine whether or not phonons are 
localized within the length of the film for the predicted frequency range. 
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Temperature (K) 
Figure 2. Estimates of the thermal conductivity versus temperature assuming phonons are either 
localized (full line) or not localized (dashed line). The reference curve (dotted line) assumes 
boundary scattering without localization. 

The dotted reference curve in figure 2 assumes only boundary scattering (a = 3) 
throughout the frequency range for 2D transport. Such a T2-dependent curve is expected 
when there is no localization and also when the ratio A I D  characterizing the degree of 
surface roughness is so small that refi(w) > rb for all w .  Comparing the other two curves 
with this reference curve, we see that a departure from Tz behaviour in the measured 
thermal conductivity is a signal for the existence of a strong-scattering frequency range 
and/or phonon localization. 

In our calculation of the thermal conductivity, only the lowest-frequency subband modes 
are taken into account (see subsection 2.2). The frequency at kll = 0 of the next-to-lowest 
transverse mode subband is n n / D  m 9 . 5 c ~ / c .  The specific heat part of the thermal 
conductivity formula (38) is a maximum at this frequency when T m 4.9 K. The next-to- 
lowest-frequency suhhand modes are therefore expected to give only a small increase in the 
thermal conductivity estimates for the considered temperature range in figure 2. 

The flexural modes were also neglected. For small kD, their flat-surface dispersion 
relation is w(k) = 3-'/*ct(1 - c ~ / c ~ ) ' / * D k 2 .  Therefore, their group velocity is of order k D  
less than the longitudinal and transverse velocities. At T = 0.5 K, kbe,,,,dD x D/C = 0.2 
and thus we expect the flexural modes to give a small contribution to the thermal conductivity 
for temperatures around 0.5 K and lower. Their contribution to the thermal conductivity at 
higher temperatures is not known. The contribution of the flexural modes to the thermal 
conductivity certainly requires further examination. 

4. Conclusion 

We have investigated phonon localization in a mesoscopic, free-standing sapphire film with 
rough surfaces. Perrin [l] argued that a mesoscopic freestanding structure is favourable for 
observing localization because of the strong elastic scattering due to the surface roughness 
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and the expected comparatively weak inelastic scattering due to two-level systems at low 
temperatures. 

Most of the work involved calculating an effective phonon transport time (equations 
(39H41) and figure I), which was then used to obtain an estimate of the frequency range 
for which the phonon localization length is less than the film length (equations (43) and 
(44)). Finally, rough estimates of the thermal conductivity versus temperature were plotted 
(figure 2 )  in the temperature range where effects due to localization are strongest. 

While the methods used to calculate the phonon transport time and estimate the phonon 
localization length are very similar to the electron methods, there are significant differences 
between the behaviour of these quantities and their counterparts for electron transport in a 
freestanding metal film with rough surfaces. These differences are a consequence of the 
stress-free boundary conditions on the phonons at the film surface and also of the phonon 
having a polarization which can change when the phonon is scattered by the rough surface, 

The calculations can be improved in several ways. The higher symmetric Lamb wave 
and transverse subband modes as well as the antisymmetric Lamb wave modes should be 
taken into account and the thermal conductivity calculation extended to lower and higher 
temperatures. Also, an actual surface wiU require a range of lengths for an accurate statistical 
description. The characterization of the surface roughness by a single correlation length is 
clearly an idealization. The consequences for the thermal conductivity of having a range of 
lengths should be investigated. 

During the course of this investigation, two questions arose conceming phonon 
localization which are of a more general nature and not necessarily restricted to phonon 
transport in the free-standing structure considered here. Both questions have a bearing 
on the r6le phonon-phonon interactions play in phonon localization. Phonon-phonon 
interactions were neglected in the present work. It is expected that the most significant 
differences between phonon localization and localization in  other wavelike systems arise 
when phonon-phonon interactions are taken into account. A recent investigation of the r61e 
of phonon-phonon interactions can be found in [21] (see also references therein). We now 
finish with an outline of these two questions. 

( I )  To what extent is it meaningful to treat the thermal phonons as (possibly) localized 
excitations as we have done in the present investigation? At non-zero temperatures, we 
expect phonon-phonon interactions to enable a phonon to 'hop' from one localized state 
to another, thus delocalizing the phonon and giving a non-zero thermal conductivity. In 
the case of electrons, the non-zero-temperature data for the electrical conductivity can be 
extrapolated to T = 0 in order to obtain the desired localization data. However, such an 
extrapolation cannot be carried out for the phonon thermal conductivity since at T = 0 
there are obviously no thermal phonons. 

(2) What r61e does the quantum nature of phonons play in localization? Planck's 
constant f i  does not appear in the estimate (43) for the localization length. The same formula 
would also apply for classical elastic wave transmission through a macroscopic, scaled-up 
version of the sapphire film (with suitably scaled-down wave frequency). Planck's constant 
only enters the specific heat part of the thermal conductivity formula (38). Differences 
between classical elastic wave localization and quantum phonon localization are expected 
to arise when anharmonic terms are included in the wave equation and the corresponding 
phonon-phonon interactions taken into account in the quantization of the wave equation. 

Answers to these questions would help provide a better understanding of phonon 
localization as a phenomenon which is distinct from localization in other wave systems 
with disorder. 
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Appendix 

We give here the explicit forms of the functions which appear in formula (39) for the 
effective transport time r&. The functions Zn(x) are modified Bessel functions of integer 
order. To shorten the equations, the arguments of the Bessel functions are given after each 
equation. 

a := 
- - I Q  1 1 1  + -11 - -12 f 1, - - 4  1 1 1  -1s - -16 

-17 2 2 2  2 4 2 4  
(AI) 

rw4p2A2c2 
4pDc: 

where In := Z,,({2w2/2c+), 

b := 

where I, := Zn(k2w2/2c:), 

(A2) 
31w~y~A~[~ exp (- $) ( ; I ,  - i ~ 2  3 3 3  - i ~ 3  + 816 - 

4pDc: 

3rw4p2 A2t2 
4pDcg 

c := 

where I. := I. ( ~ 2 w 2 / 2 c ~ ) ,  

e := 

16 

+ ~ ( - ( ~ ) ' + ( 2 + $ ) 2 ) z 5 - ~ ( 2 + $ ) I ~ + $ $ I , ]  16 (A4), 

where Z,, := Z n ( f z w 2 / 2 ~ c ~ ) ,  

nw4p2 A2f 
4pDcf 

f := 

+ (3 + (2 4- i)') 11 - f (( z)' 4- (z 4- i)') 13 

where Z,, := Z n ( . $ 2 ~ 2 / 2 c ~ ~ ~ ) ,  

4 
g := 

rw4p2A2p2 [ c202 
exp - -(cFz + c ; ~ ) ]  

4pDc t  
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where I .  := In($2w2/2c~),  

g := Hw4/r2A2$2 4pD$ exp ( -- c;;) [-(I + e) l o  + ($ + ; + ; (;)z) 11 

where I, := I n ( $ 2 0 Z  f2cZ). 
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