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Abstract. We examine the recent proposal of N Perrin concemning the possibility of observing
phonon localization in mesoscopic free-standing insulating films with surface roughness. As
our model structure, we consider a sapphire film with thickness D = 100 A, width W = 1 pm
and length £ = 10 um and surface roughness parameters A = 0.3D and £ = 500 A, where
A is the rms deviation of the surface from flatness and £ the transverse correlation length. We
derive an effective phonon transport time 7.5(w) for surface roughness scattering and then use
this to determine the approximate frequency range over which the phonon localization length
is less than the film length and also obtain a rough estimate of the thermal conductivity in the
temperature range where the effect of localization is strongest.

1. Introduction

In a recent paper {1}, Perrin argued that Anderson localization of phonons might occur at
low temperatures in a free-standing electrically insulating film of mesoscopic dimensions.
In particular, she considered free-standing crystalline silicon films of thickness 100-200 A
and transverse dimensions of a few micrometres. The reasons why such an unusually small
structure is favourable for localization are as follows. Generally, the least difficult way
to probe the phonon transport properties of a solid is to measure the thermal conductivity
as a function of temperature, Now, a necessary condition for phonon localization is that
the inelastic scattering rate be less than the elastic scattering rate and this requires that
we measure the thermal conductivity at low temperatures—typically not more than a few
kelvin. At 1 K, the thermal phonon wavelength for silicon is about 800 A and therefore a
free-standing film 100-200 A thick will be effectively two dimensional for phonon transport.
Recall that the tendency towards localization grows as the dimension is reduced and thus
low-dimensional transport is desirable.

We have so far not said anything about the film defects which are responsible for the
elastic scattering. The elastic scattering must be strong enough that the localization length
of the thermal phonons will be less than the film length. The crucial observation of Perrin
is thai the scale of the roughness of real surfaces and the thermal phonon wavelength at
temperatures around 1 K are of the same order of magnitude. Thus, at low temperatures,
we expect the thermal phonons will be strongly scattered by the surface roughness.

Using existing electron beam lithography and chemical etching techniques, it should
be just possible to fabricate a free-standing film from some electrically insulating material
having the above-guoted dimensions [2,3,4].

In the present paper, we shall determine the thermal conductivity at low temperatures of
a free-standing film with rough surfaces. It is hoped that our obtained resuits will be of use
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in interpreting the thermal conductivity data of any relevant future experiment. In particular,
our results should help to confirm the presence (or absence) of phonon localization.

In the next section, we begin with a description of the model free-standing structure to be
investigated. Starting with the Kubo-~Greenwood formula for the thermal conductivity, we
then derive the lowest-order, ‘diffuson’ approximation to the thermal conductivity. The more
technical parts of the calculation are given in the appendix. The diffuson approximation is
conveniently expressed in kinetic theory form in terms of an effective, frequency-dependent
phonon transport time Tugx(w).

In section 3, we use T.g(w) to determine the approximate frequency range over which
the phonon localization length is less than the length of the free-standing film. We then give
a rough estimate of the thermal conductivity in the temperature range for which the effect
of localization is strongest and compare with the conductivity when there is no localization
because of possible strong inelastic processes.

At a formal level, the phonon thermal conductivity calculations given in the following
two sections are very similar to the electrical conductivity calculations for a disordered metal
or semiconductor. In the details, however, there are some intriguing differences between
the phonon and electron scattering behaviour and hence in their respective localization
properties. We point out these differences.

In the conclusion, we discuss some problems which must be addressed in order to
improve our understanding of phonon localization.

2. Determination of the effective phonon transport time

2.1, The model

As our model structure, we consider a free-standing, crystalline sapphire film with mean
thickness D = 100 A, width W = 1 pm and length L = 10 um. The film coordinates
(ri, ra, r3) = (ry, r3) satisfy —%W g SIS %W, —"l'zL < %L and —%D + mirg) <
r < %D + hu(r)), where h, and & are the deviations from flatness of the upper and lower
surfaces of the film, respectively. The deviations are defined such that FJ = h; = 0, where
the overlines denote an average over an ensemble of surface roughness realizations. We
assume the deviations obey Gaussian correlation relations:

ru(rphu(r]) = M(ri(r]) = A2 exp[—& () — 77

- 4y
ku(rﬂ)h](f‘&) =0

where the latter relation means that there i3 no comelation between the roughness of the
upper and lower surfaces. The parameter A is the root mean square deviation of the
surface from flatness, while £ is the transverse correlation length. 'We assume the upper and
lower surfaces have the same values for these parameters which we take to be A = 0.3D
and £ = 500 A. The other numbers we require are the density and bulk transverse and
longitudinal sound velocities of sapphire: p = 3.99 gem=3, ¢, = 6 x 10° cm s™! and
a =11 x 10° cm s~'. We set Planck’s constant # and Boltzmann’s constant & to unity in
the calculations, reintroducing them only in the final expressions.

We consider sapphire because it is elastically isotropic to a good approximation, thus
greatly simplifying the analysis. Silicon would probably be the preferred material for
experiment, however. We expect a silicon free-standing film with the same dimensions
and roughness parameters will have qualitatively the same thermal conductivity behaviour
as a function of temperature.
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The measured correlation functions of actual surfaces are often well approximated by
a Gaussian [5]. However, in some cases an exponential function provides a better fit [6].
There are aiso surfaces which are fractal-like [7]. The nature of the surface roughness will
clearly depend on the surface material and the method of surface preparation, We have
chosen the Gaussian correlation function because it is the simplest to treat analytically.

2.2. The phonon modes

At temperatures around 1 K, the thermal phonon wavelength is several hundred Angstréms
and thus we can use the continuum approximation. The continvum equations of motion for
the ith component of the displacement field of the film at location » and time ¢t are 8]

d%u; 8%u, dcijre , . Ouy
—- (1, 1) = ¢y Y (), ¢ 2
s (r,t) Cuk!(r) ar;ar; (r,t}+ ar; (r) ar (r, ) 2)
where we have neglected anharmonic terms. We use the convention of summing over
repeating indices with i, j, &, ... = 1,2,3, The position-dependent, elastic modulus tensor
ciju () satisfies
cijr(r) = [0(—r3 + hulry) + D) — 8(—r3 + Ai(ry) — $ D)lcijia &)
with
Cijg = AB;jdk + 1 (Gikdir + 8udji) 4)

where 6() denotes the Heaviside step function and A and g are the Lamé constants, related

to the bulk transverse and longitudinal velocities by
2
= pc
g )
A= plef — 2¢0).

Equation (4) follows from the approximation of isotropy in the elastic properties of sapphire.
The normal mode solutions to (2) having wavelengths of several hundred &ngstréms are
slowly varying on the scale A. Following [8], we can therefore approximate ¢y (r) as

Cijut(T) R [B(—ry 4+ §D) — 6(—r3 — %D)Icijkf

+h (PS(=r3 + 1 D) — Ia(r)6¢(~r3 — 3 DYciju ©
and substituting into (2), we obtain
32u,' azuk auk
2 s — Ciy—— a(— 1 — B —=Fa — lD
Pan c”"’ar,-an Cisul 3?’1[ (—rs+3D)—8(—r; — 3D)]
3uk ] 1 1
teijpm— 7—Thu(r)é(—r3 + 3 D) — fu(ry}d(—r3 — 3 D)1 = C. )]
3r; Br_j

The second term on the right-hand side of the *~’ sign in (7) provides the boundary
conditions, while the third term contains the surface roughness. The boundary conditions
ensure that the stresses acting on the flat surfaces r; = :I:%D vanish. We have the very
same boundary conditions at the rough surfaces in the more exact equation (2). (In fact,
the surface roughness only enters in the boundary conditions.} For electrons in a free-
standing metal film with rough surfaces, the boundary conditions are quite different: the
wave function must vanish at the rough surfaces. As we shall see below, one consequence
of these different boundary conditions is the qualitatively different energy dependences of
the phonon and electron elastic scattering times [9].
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The Kubo-Greenwood formula for the thermal conductivity which we give below
involves the advanced and retarded displacement—displacement Green functions which
satisfy an equation similar to (7) (see equation (16)). A fruitful way to approximate the
ensemble-averaged Green functions is to neglect the third term on the right-hand side of (7)
incorporating the surface roughness and first solve for the normal modes of the flat film.
The normal modes are then used to construct the flat surface Green functions. Finally,
a series approximation to the averaged rough surface Green functions can be obtained in
terms of the flat Green functions and a “roughness potential’ (see equation (21)). Therefore,
let us neglect the surface roughness term in (7) for now and investigate the flat-film normal
modes.

The normal modes of a free-standing film are discussed in many textbooks (cf. [10]).
The most common choice of basis involves the transverse (shear horizontal} modes and the
symmetric and antisymmetric Lamb wave modes. These modes are grouped into subbands.
Far each of the three types, we shall consider only modes of the lowest-frequency subband
in our calculation of the wwansport time and thermal conductivity. Corrections arising from
the next-to-lowest-frequency subband are briefly discussed at the end of section 3. The
modes are

(a) transverse
Up (T, 1) = V"”ze&pi—ﬁ expli(k - r — wyp(k)e)]
uly(r, 1) =0 ®
wr(k) = crk = ok

{b) longitudinal

uk, (r, 1) = V-W‘%‘i expli(k « r — w ()1)]

ub('r, ty=0 &)
wp (k) = cLk =20/ 1 — (e /en%k
where Greek indices o, 8,... = 1,2 label components in the r; and r2 directions and
the wavevector satisfies k = (ky, 0) = Qam/W,2rn/L,0), n,m = 0,£1,22,.... The
antisymmetric tensor €yg satisfies €3 = —€3; = l and €y = € = 0. V = LWD is the

volume of the film and ¢r and ¢, are the velocities of the transverse and longitudinal modes
of the film, respectively. To obtain (9), we have expanded the lowest subband symmetric
Lamb wave modes in powers of D and neglected terms of order kD and higher. The
lowest-subband antisymmetric Lamb wave modes for small kD are called ‘flexural” modes.
We shall neglect the flexural modes in the caleulations below. The contribution to the
thermal conductivity from the flexural modes is briefly discussed at the end of section 3.

2.3. The Kubo-Greenwood formula for the thermal conductivity

In an experiment to measure the thermal conductivity, a given amount of power Q is
supplied to the film at, say, the r; = —1L end, with the r3 = +3L end kept at 2 fixed
temperature 7). The thermal conductivity of the film is then

Q/w
K= ——— 10
(To — D)/L {0
where Ty is the measured temperature at r3 = —%L and the power supplied is such that

(- KT
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The Kubo-Greenwood formula provides a suitable starting point for an approximate
evaluation of the thermal conductivity of the film which can be compared with experiment.
The formula for the thermal conductivity is [11]

€= %(fc11+x22) }I_I)I(I)[va dg’ f dte™
x2Z! Tr[exp(—ﬁﬁ)fa(—t - iﬁ')fa(o)]} (11)

where 8 = T7}, H and fu(t) are the Hamiltonian and the energy curent operators,
respectively, and Z is the partition function. This formnla holds under quite general
assumptions concerning the lattice dynamics [11]. Using the elastic continuum equations of
motion (2} to approximate the lattice dynamics and neglecting terms in the formula for T (6
which are higher than quadratic order in the displacement field and momentum operators,
we can express (11) in terms of the displacement-displacement Green functions. Following
the derivations in [12] and [13], we obtain

2 Z 431'TV (eﬁwl- 1) Fein Eatat
f f (2 arrar, (r e —i0G, ', r e — i)
%aa g (r,v; 0 +i0)G(r'. 7, @ + 10)
— #G (r r o+ 100Gy, rwe— 10)) (12)
ar)dry
where
Epp = (—4u 4 20)8850 — 20(8udjx + 8i58k) (13)
and where the retarded Green function is defined as
Gij(r, v, w+1i0) ;= f::o d(t — 1) explio@ — -0 — W@ (r, 1), &; (', )]} (14)
and the advanced Green function is
Gij(r,r'; 0 —i0) := f+m a(t — 1) expliow( — tHH+i0¢" — e){[a@:(r, 1), &; (', )Y} (15)
-0

with (. ) := Z7! Tr[exp(-—ﬁﬁ) -«-1. In (12), we have also averaged over an ensemble of
surface roughness realizations, as indicated by the overlines.

Equation (12) is very similar in form to the expression for the electrical conductivity
in terms of the advanced/retarded electron Green functions [14]. This close similarity
enables us to use many of the approximation techniques developed for electrical conductivity
calculations in order to evaluate the thermal conductivity. The first step is to apply
these techniques to solve approximately for the averaged one-phonon Green functions
Gij(r,v'; @ £i0). The second step is to obtain an approximation to the averaged two-
phonon Green functions G;(r, '; @ £ 10)Gy(r', r; w £ i0) in terms of the averaged one-
phonon Green functions. We give these steps in the following two subsections.
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2.4. The one-phonon Green functions

The integral form of the equations of motion for the one-phonon Green functions is (cf.
equation (7)) {8, 15]

Gylr, v 0 £i0) = GP(r, s 0 £0)

- f &G r, v 0 £ IO Lulr")Gyy(r", 5 £ 10) (16)
where ’
Li(r) —c,k;:[b‘( —r3+3 D)( — ) - 5.&3!”11("“)%)

o d
~8(=r3 — D) (-a—r-kl(rﬂ) ~ aksh.(ru)m)] o

with ¢z given in (4). In terms of the normal modes (8) and (9), the flat surface Green
functions are

{17)

1 1 Kok
© _ 1 pRa
G, (r w+il) = oV Z [(w:l:10)2 w%(k)eupé,sa ez
1 ok (18)
k-
+(co:l:10)2—w,_(k) 2 }e""(l ')

where k takcs values as indicated immediately below equation (9). Formula (18) omits the
flexural modes, as well as the sum over higher-frequency subband modes.

It is more convenient to work with the Fourier transforms of the Green functions.
Equations {16) and (17) then become

Gk, b o i0) = GOk; 0 £ 10)8,

+LWGQ ;@ £10) Y Lok, K)Goo(K', 1 w0 £10) (19)
L4
and
Lpq (e, k) = [M, — Ky Yoy + palhy — KoY 80p + (ks — kg )]
x[ho(k — k') — {k — k)] (20

where we have used the fact that G (as given in (18)) and hence G do not depend on the

r? coordinate.

Averaging the left- and right-hand sides of (19) over an ensemble of surface roughness
realizations using for example the method given in [15], we obtain an equation for G. To
quadratic order in the surface roughness deviations /1, and Ay, we have

Guu(k; 0 £10) = GO)(k; @ % 10) + G (k; @ £ 10) Ve (ks 0 £ i0)Gpu(k; @ £i0)  (21)
where
Vaglk; 0 £ 10) 1= LW Z Ten(k, $)GO(s; 0 +10)T,5(s, k)

8

% [ZN(Aé‘)zexp [—%é’z(k - 8)2] ] (22)
and
7;,5(;6, 8) 1= Ak, — 5,)5, + ik, — 5,)5v850 + phlky — 55)8p. (23)



Phonon localization in mesoscopic structures 5183

In (22), the exponential term in curly brackets is just the Fourier transform of the surface
roughness correlation function (1). The factor of two arises because both the upper and
lower surfaces are rough and uncorrelated with each other, but characterized by the same
statistical parameters. If the upper and lower surfaces were in fact identical (ie. iy = hy)
and hence correlated with each other, then we would have a factor of four instead.

Evaluating the sum over momentum § in (22) to obtain V,s and then substituting the
result in (21) and solving for G,w, we obtain

Goplls 0 £ 10) = (LW) ' [pD(@? — w2()) % iT1(k; )] expepo %

HLW) [pD(w* — &l (k) £ilL(k: m)r'% (24)
where

Pr{k; w) = Br(k; @) + Crk; ) + EL(k; w) (25)
and

I (k; @) = Do(k; w) + ELlk; @) + Av(k; @) + Crlk; w) (26)

with the functions Ar, Br, Cr, Dy and E; defined as follows:

. mokiptAtE? B (e, [ w (2 kw§2)
Arths )= 4pDcy exP[ 4 (E E )] 4oy (u +3) Iﬂ( 2cr
1 £, kewk? @ A kews?
T (" +cT)I (5 )_EE(IU)[:"(%T)
2, @ kok™\ o kw&z)]
+4k (" * c%)ls( cT) 4cT"‘( 201 7
4

Tkl ArE? N[ @, [(kof?
?T—I-k )] [4CTI°( 2cr )

Brik;, w) ;= —————exp [—E
kwt? w [ koE
(20r )+—_Iz(20r)

4pDcy

1 (., o
—— {2 +Z )
4k( +c%)l

ak (k2 i ) ’ (kzw_f:) * %I‘* (kff)] (28)

(05 (5) -5 ()

+$ (kz + f:—;-) I3 (k;f:) - ZEI”' (k;f)} 9
DL(k; w) = f_"%";;?‘ﬁ exp \:_’.;‘2

(g+)]
L

kwt?
+ 4) Iy ( Tor )

SR
G2

BEG

b
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1/ ket
L \ 1 2 \n “ 2L
w
+ +

o= Sl (0] (o5
Lram G (5
2 ) 2
2 () [ o] ()
2z
"%I“ (k;ei )} (31)

The functions I,(x) are modified Bessel functions of integer order. In the calculation of
Vg, we have neglected the real part. This gives a downward shift in the phonon velocities
from their flat-surface values ¢y and cr.

In terms of the functions 't and T, the transverse and longitudinal phonon elastic
scattering times are

tr{w) = pDal T (k; o), _, fox (32)
w(w) = pDolT k@), - (33)

For (w/cr), (w/c) « £~!, we have the familiar 2D Rayleigh scattering frequency
dependence tr{w), Ti(w) ~ ™. This strong frequency dependence should be contrasted
with the approximately energy-independent behaviour of the electron elastic scattering time
for k < £7! in a 2D metal film with rough surfaces [16]. As mentioned in subsection 2.2,
these different dependences are a consequence of the fact that the lattice wave and electron
wave satisfy different boundary conditions at the rough surface.

Another notable phonon scattering property not shared by electrons is the ‘mixing’
of the transverse and longitudinal polarizations. Note the E function in the definition
of 't (equation (23)) and the At and Ct functions in Iy (equation (26)). On scattering
from the surface roughness, a transverse phonon can transform into 2 longitudinal phonon
and vice versa, while for electrons the spin does not change. Note that this phonon
transformation is not in contradiction with the assumption of elastic scattering. (This must
be so since anharmonic terms do not appear in the equations of motion (2).) If a transverse
phonon scatters into a longitudinal phonon, then the wavelength will increase by the amount
¢L/er > 1 so that the frequency remains unchanged. Thus, Anderson localization can occur
even though the scatterers change the polarization.

2.5. The two-phonon Green function and the effective transport time

In terms of the Fourier transforms of the Green functions, expression (12) for the thermal
conductivity becomes

DV ol 1 )
k= _STFT aﬂySEaprafo w % oo _ 1 ; p

1
y |:+§Gﬁa(k, (EPERT) Y20 o e )
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1

+5Gpo . I 0 = 10)Gap(—F, L @ — 10)

—Ge(k, b w0+ 1G5 (—k, ~1; 0 — iU)] (34)

where we have used the identity
Gk, [ 0 +i0) = G, (1, —k; w £i0).
Following the Langer method [14] for determining the electrical conductivity, let us define
Ty (s @) 1= Zz Gy (R, T; 0 + 10)Ga, (—F, —; @ — 10) (35)

with analogous definitions for T++ and T-~. Using equations of motion (19) for the
one—phonon Green functions, we obtain the following equation for T+~:

(k; ©) = kG, (k; @ + i0)Gg, (k; & — 10)
+Gpo(k; o + i0)Gy: (: w-—nO)ZUagm(k s; —k, —s; 0)T,5, (s; )
(36)

where U is the jrreducible vertex. To lowest, quadratic order in the surface deviations Ay
and A, we have

2
Usgrnlk, 55 —k, —8) = LWT 4 (k, 8)T;5(—k, —5) {zﬂ(Af)z exp [—%(k - s)2:|}

0031'5.0

37

where T,g is defined in (23). The solution to (36) with U given by (37) is called the
‘diffuson’ approximmtion. Using similar methods to those of Langer [14], the diffuson
approximations to =, T+ and T~ are determined and then substituted into (34) and
the sums over the various component indices and the wavevector k carried out. (The
calculations are more involved than the analogous electron calculations because of the
tensorial nature of the terms in (36).) Proceeding directly to the final result, we obtain

h oo 5 @ 1
K= TanT A dewr o — (@BT“) 27eg(w) (38)

where
Teif(w) = —%2[&8 —L=—Cr—a)] '[ef — (L — HTr—o)]?

x{(0r - @) [0 2u + WS - $0) = Tr — T = (F - $2)
—fer%e 4u? = A(@L - Pe + 12|
+ [o*ep! (4p? = WIE(S — 2e) — (P — YT = (F — 42)]
—fer*@u - VU@L = Pe + 19)]
+HTL - e @u - DUFE - #5) - ML = H(Tr ~ = $6))]
—$eer (@ — 33((Tr - B + )]
+& e} (i — WOF G = $6) ~ (T, — Tr (e — b))

—4c* 2p + ) (Tr — )b + cb)]} (39)
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The functions I'p(w) and ' (w) are defined as

Ir(w) == Ty&; w)lk:&)/c;-
IL(@) == TLlk; @) himwse, -

The functions a{w), b(w), ..., a(e), E(w), ... are given in the appendix.

Expression (38) for the thermal conductivity has been cast in the familiar kinetic theory
form, with all the terms involving the phonan scattering conveniently grouped together in
(39) as a single, effective phonon transport time 7.g(w). The factor two is required in (38)
because there are two polarizations: longitudinal and transverse. Recall that the transport
time is defined as the inverse of the difference between the ‘scattering out’ and ‘scattering
in’ rates. If the scattering did not mix the transverse and longitudinal modes, then the
diffuson approximation to the thermal conductivity would have the same form as (38) but
with the term 27 replaced by the sum of the transverse and longitudinal phonon transport
times. Because the surface roughness mixes the polarizations, the term 27z cannot be
decomposed in this way and this is why we call 7 an ‘effective’ transport time.

Expression (39) simplifies considerably at low and high frequencies. For the frequency
range o < ¢ /€, we have Rayleigh scattering:

Tegr(@) = Ccl DPA™2% 2073 (40)

where C is a dimensionless constant depending only on ¢, and ¢, the bulk trangverse and
longitudinal velocities. For sapphire, C = 0.11.
For the frequency range w 3 ¢ /&, we have

L@y 1
152 —A/p)* 135

Note the strong w* frequency dependence in {41). This is to be contrasted with the w?
dependence of the scattering times 7 (e0) and () for the same range @ 3 ¢ /&, Functions
such as I'r(w) and afew) in (39) coincide to leading non-vanishing order in an expansion in
c%/{w&)* and therefore their difference I'r(w) — a{w) is smaller than Pr{w) by the factor
c%/(w&)?. This is the origin of the »? difference in the frequency dependence.

The increase in the transverse and longitudinal scattering times and also transport time
with increasing frequency @ 3 ¢ /€ can be understood by examining the form of the
self-energy V defined in (22) and the irreducible vertex I/ defined in (37). For k> £,
the exponential term in V and U ‘forces’ the phonon to be forward scattered, ie. s~ k.
However, the tensor term 7,s(k, 8) vanishes for s = k. Therefore, the strength of the
interaction between the phonon and the surface roughness weakens as & increases, thus
causing the phonon scattering times and transport time to increase.

From (40) and (41), we see that Te scales as (D/A)? and, furthermore, Tog(w) must
have a minimum for some frequency e close to ¢ /&. Figure 1 shows T versus frequency
for the given parameters of our model structure. The effective transport time attains its
minimum value at w 2 1.1e /€. This result is the precise expression of Perrin’s observation
that phonons with wavelength of the same order of magnitude as the scale of the surface
roughness are the most strangly scattered. Note that a similar behaviour was observed by
Seyler and Wybourne in their theoretical investigation of phonon scattering in narrow wires
with surface ronghness [171

In our determination of the thermal conductivity, we neglected scattering from the film
edges. Thus, we expect equation (38) will hold to good approximation only over the
frequency range for which Tg(w)ey < W, where W is the film width. (Recall that ¢, > cr
and therefore ¢;, sets the range.} For the parameters of our model structure, this condition

Ter(w) & 7 [ (cL/cr)’ 2 — A/u)”] e’ D AT, (41)
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1.25

Phonon Transport Time (107'%)
(=)
~3
wm

Frequency (2. 10'1s~1)

Figure 1. The effective phonon transport time versns frequency. The frequency is given in
units of ¢, /& =2 x 10! 571,

gives 0.33cL/¢ < @ < 3.1e /E. We call this the strong-scattering frequency range. As
we go to lower and higher frequencies, the transport time will deviate from (39) and tend
towards a boundary scattering time, ,, which is expected to be approximately frequency
independent and proportional to the film width:

% = aWep! (42)

where the parameter o > 1 characterizes the specularity of the scattering from the side
edges of the film. Neither is equation (42) expected to hold for arbitrarily low and high
frequencies. For low enough frequencies, the scattering length will exceed the film length
L, while for high enough freguencies, we expect the scattering length to be of the order of
the film thickness D.

3. The therma? conductivity

In this section, we first determine the frequency range for which the phonon localization
length Lyc(w) is less than the length L (= 10 gm} of the free-standing film and then obtain
estimates for the thermal conductivity versus temperature.

Most calculations of the phonon localization length treat phonons as scalars and assume
the scatterers are pointlike and uncorrelated. As a consequence, the scattering potentials
in the equations for the ensemble-averaged Green functions are isotropic. The localization
length is relatively straightforward to estimate and is found to depend on the elastic scattering
time. For the present problem, on the other hand, we see from equations (22), (23) and
{37) that the scattering potential is highly anisotropic, even vanishing for forward scattering
as was pointed out in subsection 2.5. Béal-Monod [18] has considered the more difficult
problem of amisotropic scattering {for electrons) and has argued that the localization length
estimates are identical in form to the estimates obtained assuming isotropic scattering, with
the only difference that the scattering time is replaced by the transport time. We shall
therefore assume a reasonable estimate for the phonon localization iength is given by the
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isotropic estimate with the elastic scattering length replaced by the effective transport time
Teff-

We would like to determine the maximum and minimum frequencies for which
Lig (@) < L and therefore require an estimate of L (w) for frequencies where L (@) >
W. Such an estimate can be obtained using the methods of Thouless [19,20]. The
localization length estimate is [1]

1
Lioe(w) ™ Ewmreﬂ‘(w) (43)

giving a maximum frequency

Oroan 3.1% (44)

for the condition Li.{w) < L. On the other hand, there would appear not to be a minimum
frequency: we have Ly (w) < L for 0.33cL/8 < w < 3.1cL/&, the strong-scattering range,
and for @ < 0.33¢. /& as well with Ty in (43) replaced by 7, with specularity parameter
o of order unity. However, as was pointed out in subsection 2.5, the boundary scattering
estimate (42) does not hold for arbitrarily small . For large enough wavelength, we will
have ballistic transport along the length of the film and therefore there must be 2 minimum
frequency wmn for which Li.{w) < L. We are unable to give an estimate for wny using
the present approximation methods, however, since they are appropriate only for the strong-
scattering frequency range. A separate investigation would be required.

In order that a phonon be localized, it is necessary that the time taken for the phonon
to diffuse along the localization length be less than the inelastic scattering time. Perrin
[1] assumes the inelastic scatterers in the free-standing film can be modelled as two-level
systems (TLS). For her estimates of the number density of TLSs and the coupling strength
between the TLSs and the phonons, the localization length diffusion time is indeed less than
the inelastic time when the localization length is less than the film length. However, it must
be noted that there is a good deal of uncertainty concerning the nature of inelastic scatterers
in disordered materials at low temperatures: very few experiments have been carried out on
mesoscopic, free-standing films and therefore we cannot at present rule out the possibility
of strong inelastic surface roughness and/or impurity scattering mechanisms.

Thus, in figure 2 we give two different possible estimates for the thermal conductivity
versus temperature. The dashed curve assumes the phonons are rot localized for @ < @Wmay,
because of some strong inelastic scattering mechanism giving an inelastic scattering time
which is smaller than the localization length diffusion time (but larger than 7.g). This curve
is a plot of (38), with T.;(w) replaced outside the strong-scattering frequency range by the
boundary scattering time, 7y, with specularity parameter ¢« = 3. This is clearly only a rough
approximation: the actual transition from Ter(w) to 7, will not be as abrupt.

The full curve is a rough estimate of the thermal conductivity assuming the phonons
are localized for @ < @mpa. The curve is simply a plot of (38) with T.g replaced by w
(e = 3) and with lower frequency cut-off @m,y = 3.1¢1./§ in the integration range.

H we could extend these two curves down to lower temperatures, then we would find
they eventually coincided since, as discussed above, for sufficiently low frequencies the
localization length will exceed the film length.

Given the magnitude of the difference between the two curves, it should be possible in
an experiment which measures the thermal conductivity of a free-standing film with similar
characteristics to those of our model structure to determine whether or not phonons are -
localized within the length of the film for the predicted frequency range.
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Thermal Conductivity ( W IX™1)

0.10.1%.2 0.3 0.50.,7 ¥ 1.5 2

Temperature (K)

Figure 2. Estimates of the thermal conductivity versus temperature assuming phonons are either
localized (full line) or not localized (dashed line). The reference curve (dotted line) assumes
boundary scattering without localization,

The dotted reference curve in figure 2 assumes only boundary scattering (¢ = 3)
throughout the frequency range for 2D transport. Such a T2-dependent curve is expected
when there is no localization and also when the ratic A/D characterizing the degree of
surface roughness is so0 small that teg(w) > 1, for all w. Comparing the other two curves
with this reference curve, we see that a departure from T2 behaviour in the measured
thermal conductivity is a signal for the existence of a sirong-scattering frequency range
and/or phonon localization.

In our calculation of the thermal conductivity, only the lowest-frequency subband modes
are taken into account (see subsection 2.2). The frequency at &y = O of the next-to-lowest
transverse mode subband is wer/D = 9.5c1/§. The specific heat part of the thermal
conductivity formula (38) is a maximum at this frequency when T = 4.9 K. The next-to-
lowest-frequency subband modes are therefore expected to give only a small increase in the
thermal conductivity estimates for the considered temperature range in figure 2.

The flexural modes were also neglected. For small kD, their flat-surface dispersion
relation is w(k) = 372¢,(1 — c2/c?) /2 Dk?. Therefore, their group velocity is of order kD
less than the longitudinal and transverse velocities. At T = 0.5 K, kgeqmuD =~ D/E =0.2
and thus we expect the flexural modes to give a small contribution to the thermal conductivity
for temperatures around (.5 K and lower. Their contribution to the thermal conductivity at
higher temperatures is not known. The coniribution of the flexural modes to the thermal
conductivity certainly requires further examination.

4. Conclusion

‘We have investigated phonon localization in a mesoscopic, free-standing sapphire film with
rough surfaces. Perrin [1] argued that a mesoscopic free-standing structure is favourable for
observing localization because of the strong elastic scattering due to the surface roughness
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and the expected comparatively weak inelastic scattering due to two-level systems at low
temperatures.

Most of the work involved calculating an effective phonon transport time (equations
(39)~(41) and figure 1), which was then used to obiain an estimate of the frequency range
for which the phonon localization length is less than the film length (equations (43) and
(44)). Finally, rough estimates of the thermal conductivity versus temperature were plotted
(figure 2} in the temperature range where effects due to localization are strongest.

While the methods used to calculate the phonon transport time and estimate the phonon
localization length are very similar to the electron methods, there are significant differences
between the behaviour of these quantities and their counterparts for electron transport in a
free-standing metal film with rough surfaces. These differences are a consequence of the
stress-free boundary conditions on the phonons at the film surface and also of the phonon
having a polarization which can change when the phonon is scattered by the rough surface.

The calculations can be improved in several ways. The higher symmetric Lamb wave
and transverse subband modes as well as the antisymmetric Lamb wave modes should be
taken into account and the thermal conductivity calculation extended to lower and higher
temperatures. Also, an actual surface will require a range of lengths for an accurate statistical
description. The characterization of the surface roughness by a single correlation length is
clearly an idealization. The consequences for the thermal conductivity of having a range of
lengths should be investigated.

During the course of this investigation, two questions arose concerning phonon
localization which are of a more general nature and not necessarily restricted to phonon
transport in the free-standing structure considered here. Both questions have a bearing
on the rdle phonon—phonon interactions play in phonon localization. Phonon—phonon
interactions were peglected in the present work. It is expected that the most significant
differences between phonon localization and localization in other wavelike systems arise
when phonon—phonon interactions are taken into account. A recent investigation of the role
of phonon-phonon interactions can be found in [21] (see also references therein). We now
finish with an outline of these two questions.

(1) To what extent is it meaningful to treat the thermal phonons as (possibly) localized
excitations as we have done in the present investigation? At non-zero temperatures, we
expect phonon—phonon interactions to enable a phonon to ‘hop’ from one localized state
to another, thus delocalizing the phonon and giving a non-2ero thermal conductivity, In
the case of electrons, the non-zero-temperature data for the electrical conductivity can be
extrapolated to T = O in order to obtain the desired localization data. However, such an
extrapolation cannot be carried out for the phonon thermal conductivity since at T = 0
there are obviously no thermal phonons.

(2) What rdle does the quantum nature of phonons play in localization? Planck's
constant fi does not appear in the estimate (43) for the localization length. The same formula
would also apply for classical elastic wave transmission through a macroscopic, scaled-up
version of the sapphire film (with suitably scaled-down wave frequency). Planck’s constant
only enters the specific heat part of the thermal conductivity formula (38). Differences
between classical elastic wave localization and quantum phonon localization are expected
to arise when anharmonic terms are included in the wave equation and the corresponding
phonon—phonon interactions faken into account in the quantization of the wave equation.

Answers to these questions would help provide a better understanding of phonon
localization as a phenomenon which is distinct from localization in other wave systems
with disorder.
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Appendix

We give here the explicit forms of the functions which appear in formula (39) for the
effective transport time zesr. The functions I,(x) are modified Bessel functions of integer
order. To shorten the equations, the arguments of the Bessel functions are given after each
equation.

*ulAZE? 202 1 1 1 1 1 1
= Mexp (—E d ) (—§I°+ sh—-bt+ -+ =I5~ llﬁ-i- Zh)

4pDc.? 2¢2 2 2 2 4 2
(Al)
where I, := I,(§20?/2c3),
rwtpu?Alg? 2\ (9 3 3 3 3 )

3 | Zh—ch-Sh+il——I A2
b= D “p( 2.:%)(161 g ghtgl gl (52)
where I, 1= L(§°w?/2c2),

ratlA? E2w? 1 5 1 1 1 )

— - S AN A ATy NN Ny A3

c 40DcS CXP( ZC%)( 20'|'41 12+23 24+45 (A3)
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2 2
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where I, := IL.(£2w?2crey),
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L
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where I, .= I,(82w?/2¢3).
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